2016 DRINKING WATER QUALITY REPORT
– Summarizing 2015 Water Quality Test Results
DC WATER CONTACT INFORMATION

Drinking Water Division (202) 612-3440
Customer Service (202) 354-3600
24-Hour Command Center (202) 612-3400
External Affairs (202) 787-2200
dcwater.com

Additional contacts:
US Army Corps of Engineers
Washington Aqueduct (202) 764-2703
nab.usace.army.mil/Missions/WashingtonAqueduct.aspx

Department of Energy
and Environment (202) 535-2600
doe.dce.gov

Interstate Commission on
the Potomac River Basin (301) 984-1908
potomacriver.org

EPA Region III Drinking Water Branch (215) 814-2321

The 2016 Water Quality Report is available for download at dcwater.com/waterreport.

Reports from previous years can be viewed at
dcwater.com/waterquality/waterquality_reports.cfm.

Please call 202-787-2200 or send an email to externalaffairs@dcwater.com to request a printed copy.

CONTENTS

CEO and General Manager’s Message 2
Your Drinking Water Source 3
Protecting Your Drinking Water Supply 4
Drinking Water Treatment 5
Important Health Information 6
Drinking Water Analysis Data 7-11

Esté reporte contiene información importante sobre su agua potable. Para obtener una traducción del reporte, por favor comuníquese con la Oficina de Asuntos Externos a través del 202-787-2200 o externalaffairs@dcwater.com.

Additional contacts:
US Army Corps of Engineers
Washington Aqueduct (202) 764-2703
nab.usace.army.mil/Missions/WashingtonAqueduct.aspx

Department of Energy
and Environment (202) 535-2600
doe.dce.gov

Interstate Commission on
the Potomac River Basin (301) 984-1908
potomacriver.org

EPA Region III Drinking Water Branch (215) 814-2321

The 2016 Water Quality Report is available for download at dcwater.com/waterreport.

Reports from previous years can be viewed at
dcwater.com/waterquality/waterquality_reports.cfm.

Please call 202-787-2200 or send an email to externalaffairs@dcwater.com to request a printed copy.

该报告包含有关您的饮用水的重要信息。如需翻译版的报告，请联系外事办公室，电话：202-787-2200， 邮件： externalaffairs@dcwater.com。

Additional contacts:
US Army Corps of Engineers
Washington Aqueduct (202) 764-2703
nab.usace.army.mil/Missions/WashingtonAqueduct.aspx

Department of Energy
and Environment (202) 535-2600
doe.dce.gov

Interstate Commission on
the Potomac River Basin (301) 984-1908
potomacriver.org

EPA Region III Drinking Water Branch (215) 814-2321

The 2016 Water Quality Report is available for download at dcwater.com/waterreport.

Reports from previous years can be viewed at
dcwater.com/waterquality/waterquality_reports.cfm.

Please call 202-787-2200 or send an email to externalaffairs@dcwater.com to request a printed copy.

Ce rapport contient des renseignements importants à propos de votre eau potable. Si vous souhaitez vous procurer un rapport traduit, veuillez communiquer avec le Bureau des affaires extérieures en composant le 202-787-2200, ou connectez-vous à externalaffairs@dcwater.com.

If you have a question about this report and require assistance from a translator, please contact Customer Service at 202-354-3600 (8 a.m. to 5 p.m., Monday through Friday).
Dear Customers,

It is with great pride that I present your 2016 Water Quality Report, which details the outstanding quality of your drinking water and reflects the dedication of more than 1,100 employees who serve you seven days a week and 24 hours a day. Customer safety is our first priority, and the 2015 test results presented in this report demonstrate that your drinking water surpassed the water quality standards established by the U.S. Environmental Protection Agency (EPA). In 2015, DC Water collected more than 6,000 water samples and conducted over 41,000 tests to ensure that high quality water reaches residents and businesses in the District of Columbia.

Please take this opportunity to learn more about your drinking water and DC Water’s efforts to protect public health and our drinking water source, the Potomac River. We are committed to providing you with the best water at the lowest possible price and protecting your drinking water source for generations to come. If you have questions, concerns or suggestions, please contact us at one of the numbers listed on the previous page.

Sincerely,

George S. Hawkins, CEO and General Manager

YOUR DRINKING WATER QUALITY

In the following pages, you will find an overview of the required and voluntary water testing programs that protect our drinking water system. In order to ensure that tap water is safe to drink, the Environmental Protection Agency prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline (800-426-4791).
THE POTOMAC RIVER – YOUR DRINKING WATER SOURCE

DC Water purchases treated drinking water from the Washington Aqueduct and distributes the treated drinking water to more than 650,000 residential, commercial, and governmental customers in the District of Columbia.

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land and into the Potomac River, it dissolves naturally occurring minerals, and in some cases, radioactive material. The water can also pick up substances resulting from the presence of animals or human activity. Prior to water treatment, contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria that may come from agricultural livestock operations, septic systems, wastewater treatment plants and wildlife.
- Inorganic contaminants, such as salts and metals that can be naturally occurring or result from urban stormwater runoff, farming, and industrial or domestic wastewater discharges.
- Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and also may come from gas stations, urban stormwater runoff, and septic systems.
- Radioactive contaminants that can be naturally-occurring or the result of mining activities.

SOURCE WATER PROTECTION EFFORTS

DC Water is a member of the Potomac River Basin Drinking Water Source Protection Partnership, a collaborative effort of drinking water suppliers and government agencies to protect shared drinking water sources. The group is currently working with the Metropolitan Washington Council of Governments (MWCOG) to update the 2002 District of Columbia Source Water Assessment. For more information about the Partnership’s efforts, visit potomacdwsp.org.
PROTECTING YOUR DRINKING WATER SUPPLY

Protect The Watershed – A watershed is an area of land that drains to a particular point along a stream or river. The best way to protect the Potomac River from contamination is to help protect the watershed. You can help protect your drinking water supply in several ways:

• Prevent trash and debris from entering storm drains and catch basins. To report a clogged drain or basin, call (202) 612-3400.
• Dispose of household waste, grease and motor oil properly.
• Report spills that could potentially enter the waterways by calling the DC 311 Call Center.
• Do not flush pharmaceuticals down the toilet or drain. Find a drug take-back location or properly dispose of medications in the garbage.

DRINKING WATER QUALITY IS A SHARED RESPONSIBILITY OF DC WATER AND RESIDENTS

1. Drinking water is drawn from the Potomac River by the Washington Aqueduct.

2. The Washington Aqueduct is responsible for water treatment.

3. DC Water is responsible for monitoring water quality in the distribution system.

4. Customers are responsible for ensuring that water quality is maintained on private property.
The Washington Aqueduct collects water from the Potomac River and treats the water at the Dalecarlia and McMillan Treatment Plants. Like most public water systems around the country, the Washington Aqueduct uses a multi-step treatment process. The treatment process includes sedimentation, filtration, fluoridation, pH adjustment, disinfection using free chlorine and chloramine (chlorine + ammonia), and corrosion control using orthophosphate. DC Water works closely with the Aqueduct to ensure that the water leaving the plant meets the Environmental Protection Agency drinking water standards. Once the water leaves the treatment plant, DC Water collects samples throughout the District of Columbia to monitor the quality of the water as it travels through the pipes to your tap.

Why is chlorine used for disinfection?

Most of the year, the Washington Aqueduct uses chloramine to disinfect the drinking water. For a short period each year, during the spring, the Washington Aqueduct switches the disinfectant from chloramine to chlorine. This change is part of an annual program to clean water pipes and maintain water quality throughout the year. This is a standard practice for water systems that use chloramine during the majority of the year. Public water systems use chlorine to kill harmful bacteria and viruses that can make people sick. The level of chlorine is safe for consumption, but you can reduce the chlorine smell and taste by placing an open pitcher of water in the fridge. If you haven’t used water in several hours, let the cold water run for 2 minutes before filling the pitcher.
IMPORTANT HEALTH INFORMATION

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The Environmental Protection Agency and the Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Cryptosporidium
Cryptosporidium is a microbial pathogen found in most surface water in the U.S. The Washington Aqueduct monitors for Cryptosporidium in the Potomac River every month. Cryptosporidium has not been detected in a single sample since October 2005. Ingesting Cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water. Most healthy individuals can overcome the disease within a few weeks. However, immuno-compromised people are at greater risk of developing a life-threatening illness. DC Water encourages immuno-compromised individuals to consult their doctor regarding appropriate precautions to avoid infection.

Giardia
The Washington Aqueduct monitors for giardia lamblia cysts in the Potomac River every month. Giardia lamblia cysts were detected in one sample with a concentration of 0.10 cysts/L in February of 2015.

Lead
Drinking water is essentially lead-free when it leaves the treatment plant, but lead can be released when the water comes in contact with pipes and plumbing fixtures that contain lead. Lead sources and lead levels vary between buildings, so it is important to identify and remove any lead sources in each household. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. A water service line connects the water main in the street to your household plumbing. The service line is owned by the property owner. The Washington Aqueduct and DC Water are responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your cold water tap for at least two minutes before using water for drinking or cooking. If you are concerned about lead in your drinking water, you should determine if you have lead plumbing or other sources of lead on your property and consider testing your water for lead. To request information about your water service pipes, please contact DC Water’s Customer Service at (202) 354-3600. To request a free lead test kit from DC Water, please contact our Drinking Water Division at 202-612-3440.

Until all sources of lead in drinking water have been removed, pregnant or nursing women and children under the age of six should use filtered tap water for drinking and cooking. This includes water used for making infant formula, beverages and ice. Filters should be certified to meet NSF Standard 53 for lead removal. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the EPA’s Safe Drinking Water Hotline (800-426-4791), epa.gov/safewater/lead and dcwater.com/lead.

Download our brochure
TIPS TO REDUCE LEAD in DRINKING WATER
The tables in the following section present the 2015 results of our monitoring of regulated and unregulated water quality parameters that were detected above the Environmental Protection Agency’s (EPA) analytical method detection limit. Not listed are over 100 substances that were tested for, but were not detected. The test results compare the quality of your tap water to federal standards for each detected parameter, where applicable. For most of the results, you will see the unit of measurement, the EPA’s regulatory limits, and the range of detected values. For regulated contaminants, we have also provided the typical contaminant sources. Please note that the monitoring frequency of each parameter varies.

The water quality test results indicate that your drinking water complied with all of the EPA’s drinking water standards in 2015.

For testing results from previous years, please visit dcwater.com/waterquality/waterquality_reports.cfm.
As you review the test results in the following section, you may find terms and abbreviations with which you are not familiar. Below is a reference guide to help you better understand the terms and abbreviations used in this report.

Abbreviations and Definitions

AL (Action Level):
The concentration of a contaminant which, if exceeded, triggers a treatment or other requirement that a water system must follow. Other requirements may include additional testing, public notification or capital improvements. The AL is not equivalent to a maximum contaminant level or MCL (see definition below).

CaCO₃: Calcium carbonate.

EPA (Environmental Protection Agency):
An agency of the U.S. federal government which was created for the purpose of protecting human health and the environment, including drinking water, by writing and enforcing regulations based on laws passed by Congress.

HAAs (Haloacetic Acids (5)):
The five haloacetic acid species required to be monitored by EPA.

MRDL (Maximum Residual Disinfectant Level):
The highest level of a disinfectant that is allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal):
The level of a drinking water disinfectant below which there is no known or expected risk to health. MDRLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MCLG (Maximum Contaminant Level Goal):
The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCL (Maximum Contaminant Level):
The highest level of a contaminant that is allowed in drinking water. MCLs are set as close as feasible using the best available treatment technology.

NA: Not applicable.

ND: Not detected.

NH₃-N:
Measurement of ammonia in the form of nitrogen.

NO₂-N:
Measurement of nitrite in the form of nitrogen.

NTU (Nephelometric Turbidity Units):
Turbidity is measured with an instrument called a nephelometer, which measures the intensity of light scattered by suspended matter in the water. Measurements are given in nephelometric turbidity units (NTUs).

pCi/L (picocuries per liter): Measure of radioactivity.

PO₄:
Phosphate

ppm:
parts per million. Equivalent to a drop of water in 50 liters of liquid.

ppb:
parts per billion. Equivalent to half a teaspoon of water in one Olympic-size swimming pool.

ppt:
parts per trillion. Equivalent to a drop of water in 20 Olympic-size swimming pools.

SMCL (Secondary Maximum Contaminant Limit):
Established by EPA as non-mandatory water quality standards only as guidelines to assist public water systems in managing drinking water for aesthetic qualities, such as taste, color and odor. These contaminants are not considered to present a risk to human health at the SMCL.

TT (Treatment Technique):
A required process intended to reduce the level of a contaminant in drinking water.

Turbidity:
A measure of the cloudiness of water. We measure turbidity because it is a good indicator of the effectiveness of the water treatment system. Turbidity in excess of 5 NTU is just noticeable to the average person.
Regulated Contaminants

Water Treatment Plant Performance

<table>
<thead>
<tr>
<th>Turbidity</th>
<th>Units</th>
<th>EPA Limits</th>
<th>DC Drinking Water</th>
<th>Description / Typical Sources of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NTU</td>
<td>MCLG</td>
<td>MCL or TT</td>
<td>(maximum hourly) 0.11</td>
</tr>
<tr>
<td>% of monthly turbidity readings ≤ 0.3 NTU</td>
<td>NA</td>
<td>TT = 1 (maximum)</td>
<td>100%</td>
<td>Turbidity is often caused by soil runoff</td>
</tr>
</tbody>
</table>

Water Entering DC Water’s Distribution System

<table>
<thead>
<tr>
<th>Inorganic Metals</th>
<th>Units</th>
<th>EPA Limits</th>
<th>DC Drinking Water</th>
<th>Description / Typical Sources of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony<sup>1</sup></td>
<td>ppb</td>
<td>6</td>
<td>6</td>
<td>0.3 ND to 0.3 Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder</td>
</tr>
<tr>
<td>Arsenic<sup>1</sup></td>
<td>ppb</td>
<td>0</td>
<td>10</td>
<td>0.4 ND to 0.4 Erosion of natural deposits; Runoff from orchards</td>
</tr>
<tr>
<td>Barium</td>
<td>ppm</td>
<td>2</td>
<td>2</td>
<td>0.04 0.03 to 0.04 Erosion of natural deposits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inorganic Anions</th>
<th>Units</th>
<th>EPA Limits</th>
<th>DC Drinking Water</th>
<th>Description / Typical Sources of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoride</td>
<td>ppm</td>
<td>4.0</td>
<td>4.0</td>
<td>0.9 0.5 to 0.9 Water additive which promotes strong teeth</td>
</tr>
<tr>
<td>Nitrate as Nitrogen</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>2 0.5 to 2 Runoff from fertilizer use; Erosion of natural deposits</td>
</tr>
<tr>
<td>Nitrite as Nitrogen</td>
<td>ppm</td>
<td>1</td>
<td>1</td>
<td>0.01 ND to 0.01 Runoff from fertilizer use; Erosion of natural deposits</td>
</tr>
<tr>
<td>Cyanide<sup>2</sup></td>
<td>ppb</td>
<td>200</td>
<td>200</td>
<td>7 ND to 7 Discharge from steel/metal factories; Discharge from plastic and fertilizer factories</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Synthetic Organic Contaminants</th>
<th>Units</th>
<th>EPA Limits</th>
<th>DC Drinking Water</th>
<th>Description / Typical Sources of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrazine</td>
<td>ppb</td>
<td>3</td>
<td>3</td>
<td>0.1 ND to 0.1 Herbicide runoff</td>
</tr>
</tbody>
</table>

Volatile Organic Contaminants

None detected other than trihalomethanes reported on next page

Radionuclides³

<table>
<thead>
<tr>
<th>Radionuclides</th>
<th>Units</th>
<th>EPA Limits</th>
<th>DC Drinking Water</th>
<th>Description / Typical Sources of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross alpha particles</td>
<td>pCi/L</td>
<td>0</td>
<td>15</td>
<td>9 ND to 9 Erosion of natural and man-made deposits</td>
</tr>
</tbody>
</table>

¹ Antimony and arsenic were detected, although levels were below the minimum detection limits prescribed by EPA.

² The cyanide result is a measure of total cyanide. The MCL (0.2 ppm) is for free cyanide only which is subset of total cyanide.

³ Triennial radionuclide monitoring was performed in 2014.
DC WATER’S DISTRIBUTION SYSTEM

<table>
<thead>
<tr>
<th>Units</th>
<th>EPA Limits</th>
<th>DC Drinking Water</th>
<th>Violation</th>
<th>Description / Typical Sources of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCLG</td>
<td>MCL or TT</td>
<td>Highest</td>
<td>Range</td>
</tr>
</tbody>
</table>

Microbial Indicators

<table>
<thead>
<tr>
<th>Total Coliform Bacteria</th>
<th>% of total-coliform-positive samples</th>
<th>0</th>
<th>5% of monthly samples are positive</th>
<th>0.8%</th>
<th>0 to 0.8%</th>
<th>no</th>
<th>Naturally present in the environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.coli Bacteria</td>
<td>Number positive</td>
<td>0</td>
<td>1 positive sample</td>
<td>0 to 1</td>
<td>no</td>
<td>Human and animal fecal waste</td>
<td></td>
</tr>
</tbody>
</table>

DISINFECTANTS AND DISINFECTION BYPRODUCTS

- **Chlorine**
 - ppm
 - 4 (MRDLG) (annual average)
 - 4 (MRDL) (annual average)
 - 3.2 (Highest running annual average)
 - 0.1 to 4.3 (Range of single site results)
 - no
 - Water additive used to control microbes; Chlorine is combined with ammonia to form chloramine.

- **Total Trihalomethanes**
 - ppb
 - NA
 - 80 (4-quarter locational running average)
 - 46 (Highest locational running annual average)
 - 15 to 66 (Range of single site results)
 - no
 - By-product of drinking water disinfection.

- **Haloacetic Acids (5)**
 - ppb
 - NA
 - 60 (4-quarter locational running average)
 - 29 (Highest location running annual average)
 - 12 to 43 (Range of single site results)
 - no
 - By-product of drinking water disinfection.

LEAD AND COPPER (AT THE CUSTOMER’S TAP)

<table>
<thead>
<tr>
<th>Units</th>
<th>EPA Limits</th>
<th>DC Drinking Water</th>
<th>Violation</th>
<th>Description / Typical Sources of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCLG</td>
<td>Action Level</td>
<td>Samples above AL</td>
<td>90th Percentile</td>
</tr>
</tbody>
</table>

Lead
- **January-June Monitoring Period**
 - ppb
 - 0
 - 15
 - 0 of 108
 - 2
 - no
 - Corrosion of household plumbing systems; erosion of natural deposits

- **July-December Monitoring Period**
 - ppb
 - 0
 - 15
 - 1 of 110
 - 4
 - no

Copper
- **January-June Monitoring Period**
 - ppm
 - 1.3
 - 1.3
 - 0 of 108
 - 0.085
 - no
 - Corrosion of household plumbing systems; erosion of natural deposits

- **July-December Monitoring Period**
 - ppm
 - 1.3
 - 1.3
 - 0 of 110
 - 0.086
 - no
 - Corrosion of household plumbing systems; erosion of natural deposits
Contaminants without Primary MCLs or Treatment Techniques

WATER ENTERING DC WATER’S DISTRIBUTION SYSTEM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>ppb</td>
<td>26</td>
<td>10 to 68</td>
</tr>
<tr>
<td>Bromide</td>
<td>ppm</td>
<td>ND</td>
<td>ND to 0.08</td>
</tr>
<tr>
<td>Calcium</td>
<td>ppm</td>
<td>37</td>
<td>26 to 51</td>
</tr>
<tr>
<td>Chloride</td>
<td>ppm</td>
<td>53</td>
<td>27 to 140</td>
</tr>
<tr>
<td>Copper at Point of Entry<sup>4</sup></td>
<td>ppb</td>
<td>4</td>
<td>0.7 to 17</td>
</tr>
<tr>
<td>Iron</td>
<td>ppb</td>
<td>ND</td>
<td>ND to 16</td>
</tr>
<tr>
<td>Lithium</td>
<td>ppb</td>
<td>2</td>
<td>1 to 3</td>
</tr>
<tr>
<td>Magnesium</td>
<td>ppm</td>
<td>8</td>
<td>3 to 14</td>
</tr>
<tr>
<td>Manganese</td>
<td>ppb</td>
<td>0.6</td>
<td>ND to 2</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ppb</td>
<td>0.6</td>
<td>ND to 1</td>
</tr>
<tr>
<td>N-Nitroso-dimethylamine (NDMA)</td>
<td>ppt</td>
<td>ND</td>
<td>ND to 3</td>
</tr>
<tr>
<td>Nickel</td>
<td>ppb</td>
<td>0.9</td>
<td>0.6 to 1</td>
</tr>
<tr>
<td>Orthophosphate (as PO<sub>4</sub>)</td>
<td>ppm</td>
<td>2.4</td>
<td>1.9 to 3</td>
</tr>
<tr>
<td>Perchlorate</td>
<td>ppb</td>
<td>0.6</td>
<td>0.2 to 7.5</td>
</tr>
<tr>
<td>Potassium</td>
<td>ppm</td>
<td>3.0</td>
<td>2.2 to 4.2</td>
</tr>
<tr>
<td>Sodium</td>
<td>ppm</td>
<td>32</td>
<td>16 to 70</td>
</tr>
<tr>
<td>Strontium</td>
<td>ppb</td>
<td>161</td>
<td>85 to 246</td>
</tr>
<tr>
<td>Sulfate</td>
<td>ppm</td>
<td>43</td>
<td>30 to 71</td>
</tr>
<tr>
<td>HAAS at Point of Entry<sup>5</sup></td>
<td>ppb</td>
<td>25</td>
<td>10 to 36</td>
</tr>
<tr>
<td>Total Ammonia</td>
<td>ppm</td>
<td>0.7</td>
<td>0.01 to 0.9</td>
</tr>
<tr>
<td>Total DCPA (mono- & -di-acid degradates)</td>
<td>ppb</td>
<td>ND</td>
<td>ND to 0.1</td>
</tr>
<tr>
<td>Total Hardness</td>
<td>ppm</td>
<td>124</td>
<td>82 to 173</td>
</tr>
<tr>
<td>Total Hardness</td>
<td>grains/gal</td>
<td>7.2</td>
<td>4.8 to 10.1</td>
</tr>
<tr>
<td>TTHM at Point of Entry<sup>5</sup></td>
<td>ppb</td>
<td>37</td>
<td>14 to 65</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ppb</td>
<td>ND</td>
<td>ND to 0.9</td>
</tr>
<tr>
<td>Zinc</td>
<td>ppb</td>
<td>1</td>
<td>ND to 23</td>
</tr>
</tbody>
</table>

⁴ Results represent levels entering DC Water’s distribution system and are distinct from the results of copper compliance monitoring conducted in residential homes.

⁵ Monitoring for these parameters is not required at entry points, but is required in the distribution system.

Other Water Quality Parameters

DC WATER’S DISTRIBUTION SYSTEM & TAP MONITORING RESULTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity</td>
<td>ppm</td>
<td>65</td>
<td>47 to 93</td>
</tr>
<tr>
<td>Aluminum Total mg/L</td>
<td>ppm</td>
<td>0.007</td>
<td>0 to 0.08</td>
</tr>
<tr>
<td>Ammonia-Free NH3-N</td>
<td>ppm as NH<sub>3</sub>-N</td>
<td>0.20</td>
<td>0.08 to 0.31</td>
</tr>
<tr>
<td>Calcium Hardness mg/L as CaCO<sub>3</sub></td>
<td>ppm as CaCO<sub>3</sub></td>
<td>94</td>
<td>61 to 128</td>
</tr>
<tr>
<td>grains per gallon</td>
<td>Grains per gallon as CaCO<sub>3</sub></td>
<td>5.5</td>
<td>3.6 to 7.5</td>
</tr>
<tr>
<td>Dissolved Orthophosphate mg/L</td>
<td>ppm</td>
<td>2.50</td>
<td>2.01 to 4.14</td>
</tr>
<tr>
<td>Iron Total mg/L<sup>4</sup></td>
<td>ppm</td>
<td>0.05</td>
<td>0 to 0.21</td>
</tr>
<tr>
<td>Nitrite mg/L</td>
<td>ppm as NO<sub>2</sub>-N</td>
<td>0.02</td>
<td>0.002 to 0.212</td>
</tr>
<tr>
<td>pH</td>
<td>--</td>
<td>7.67</td>
<td>7.52 to 7.86</td>
</tr>
<tr>
<td>Temperature F</td>
<td>Degrees Fahrenheit</td>
<td>65</td>
<td>39 to 91</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>ppm</td>
<td>204</td>
<td>146 to 286</td>
</tr>
</tbody>
</table>

⁴The secondary maximum contaminant level (SMCL) for iron is 0.3 ppm. SMCLs are established by EPA only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, or odor. These contaminants are not considered to present a risk to human health at the SMCL.
GET INVOLVED

The DC Water Board of Directors conducts regularly scheduled board meetings that are open to the public, generally on the first Thursday of each month, 9:30 AM at the Blue Plains Facility, 5000 Overlook Ave, SW, Washington, DC 20032.

Please visit dcwater.com or contact the Office of the Board Secretary at (202) 787-2330 to confirm a meeting time and location.